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Abstract 

CRISPR Clustered regularly interspaced short palindromic repeats. CRISPR-associated protein (Cas) technology for site-specific 

genome editing has been used to precisely induce mutagenesis in a variety of plant species, including rice. Because Cas9 causes blunt-

ended double-strand breaks, which are then repaired without substantial end-processing, a high fraction of mutations created by 

CRISPR/Cas9 is extremely short insertions and deletions. CRISPR/Cas9 is a powerful tool for targeted mutagenesis in rice, as well as 

some essential crops. One of the most demanding environmental restrictions affecting agricultural output around the world is salinity 

and drought. Because plant adaptation to abiotic stress is polygenic, much more rice genes have that play a critical role in abiotic stress 

response. 

Introduction 

The CRISPR-Cas system, the most recent genome editing 

approach, evolved from the adaptive immune system of bacteria 

and archaea, which allows organisms to adaptive immunity 

against the bacteriophage virus. CRISPR- clustered regularly 

interspaced short palindromic repeat was discovered- 2002. 

Though all CRISPR-Cas systems have DNA repeats, spacers, and 

Cas genes in common, the system has a great deal of variability 

due to fast evolution and horizontal gene transfer in nature. The 

CRISPR-Cas systems were classified using a multi-criteria 

approach based on characteristic Cas genes (Cas1, Cas2) and the 

sequence is very much similar to Cas proteins, Cas1, and also the 

structural arrangement of the system in the loci. In the genome-

editing technique, accuracy in base editing has always been a 

challenge. By combining catalytically inactive Cas9 variants, 

dCas9 (dead Cas9), and Cas9 nickase to target deaminase 

domains and edit specific loci, efforts are being undertaken to 

improve the accuracy of gene editing schemes. Other than the 

CRISPR/Cas9 system, recent findings have revealed a variety of 

possible tools, including type V systems having the DNA-

targeting Cas12 (Cpf1 or C2c1) effectors and RNA-targeting type 

VI systems containing the Cas13 (C2c2). 

Rice genome editing with Cas9 system 

All available internet tools were used to design and synthesize 

sgRNA, starting with the selection of the target gene. The sgRNA 

has been cloned into a plant binary vector along with the 

necessary Cas9 or Cas12 variants for transformation into target 

plant species using an acceptable approach such as 

Agrobacterium-mediated transformation. The presence of Cas9 or 

Cas12 and sgRNA would be tested after transformation on the 

putatively transformed plants. The plants are then screened for the 

desired targeted mutations using PCR-RE genotyping and DNA 

sequencing techniques, followed by the creation of transgenic 

seeds. 

The Applications of CRISPR/Cas9 technology in plant 

science 

In rice Gene research is a field of study that looks into how genes 

work. There are Abiotic stress (salt, drought, cold, heat, etc.) and 

biotic stress are (bacteria, viruses, fungi, etc.) conditions that are 

posing hazards to agriculture around the world. Crop breeders are 

always pursuing yield gains, quality improvement, and stress 

tolerance/ resistance as a result of the global population increase, 
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shortages of food, and degradation of the environment. Genome 

editing through CRISPR/Cas9-technology can be used for more 

than only functional genomics areas; it can also be used to 

improve crop types. CRISPR/Cas9 has the potential to be 

extremely useful in many aspects of plant breeding, both today 

and in the future. 

The major challenges for CRISPR/Cas9 in Crop 

CRISPR/Cas9 gene-editing system has a wide range of possible 

uses in plant science.  The narrow pool of genes influencing 

essential agronomic features, which are a requirement for 

employing this technology, is a big barrier. In this regard, 

deciphering genomic sequencing data and targeting the genetic 

data for crop development are urgently needed. Other obstacles 

include inefficient transformation systems and difficulty with 

plant tissue cultures and regeneration, both of which necessitate 

an intricate, tedious, and time-taking process. The possibility for 

off-target consequences, as well as the safety concerns associated 

with CRISPR regenerated bioproducts, is currently being debated. 

Off-target effects are, fortunately, more acceptable in plants than 

in animals, particularly humans. Plant mutants having off-target 

effects can be found and deleted via segregation during 

successive crosses as detection technologies improve. Designing 

appropriate sgRNAs with a strong affinity for targeted reason 

sequences and selecting a Cas9 nuclease with high processivity, 

in combination with the proper experimental procedure, may help 

to overcome off-target effects in the future. The lack of market 

access for genome-edited crops is another important issue. 

Conclusion 

CRISPR/Cas9 technologies have opened up new possibilities in 

the domain of plant genetic manipulation. CRISPR has several 

desirable qualities for a proper gene editing system for site-

specific mutagenesis, high specificity, high processivity, cheap 

cost, high efficiency, and very simple perform in the lab, which is 

not possible with old mutation techniques. The CRISPR system is 

also highly developed to the ZFN and TALEN gene-editing 

system because the Cas9 nuclease is guided by RNA rather than 

proteins. Because the CRISPR/Cas9 system is reasonably well 

known, its construct methods have been developed now to this 

day, and efforts to limit off-target effects have been made. Special 

toolkits for the easy creation of CRISPR/Cas9 systems are also 

being developed, the development approaches for CRISPR/Cas9 

created cut screening it can also use a single transformation event 

to modify a single gene or a greater number of genes. 

Furthermore. All of these benefits have prompted the researcher’s 

use of CRISPR/Cas9 in crop improvement and plant molecular 

research, particularly for traits related to high yield quality, biotic 

stress, and abiotic stress resistance. CRISPR/Cas9 is also 

appealing because it has the ability to produce gene-edited crops. 

As a result, CRISPR technology appears to be the best tool for 

plant molecular research area. 
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